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The presence of the free surface adds an element of difficulty to the development
of numerical and theoretical methods for the performance prediction of surface-
piercing hydrofoils. Existing methods of analysis for two-dimensional surface-piercing
hydrofoils or blade sections of a surface-piercing propeller solve either a linear
problem, assuming a thin section and ventilated surface along with linear free-surface
boundary conditions, or a nonlinear problem in a self-similar setting. Both these
approaches cannot be used when the effects of gravity are important, which is the
case when a craft is operating at low speeds. A two-dimensional boundary-element-
method-based numerical scheme is presented here that overcomes these drawbacks by
solving the fully ventilated flow past a surface-piercing hydrofoil of finite dimensions
and includes the whole gamut of nonlinear free-surface interactions. The unique aspect
of the numerical scheme is that fully nonlinear boundary conditions are applied on
the free surface which allows for the accurate modelling of the jet generated on the
wetted boundary and the ventilated surface formed on the suction side as a result
of the passage of the hydrofoil through the free surface. Moreover, the effects of
gravity can be considered to take into account the influence of the Froude number.
Ventilated-surface shapes predicted by the present scheme are compared with existing
experimental results and are shown to be in good agreement.
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1. Introduction
Surface piercing or partially submerged propellers have emerged as one of the

efficient systems of propulsion for high-speed crafts. The concept of having only a
part of the propeller submerged during a cycle of revolution offers a rather unique set
of advantages that gives better efficiency compared to conventional subcavitating or
supercavitating submerged propellers. Some of the advantages that contribute towards
a better propulsive efficiency and extended range of operation are (i) a considerable
reduction in the appendage drag due to the absence of submerged components like
shafts and struts, (ii) a reduction in the detrimental effects of cavitation as it is
replaced by ventilation and (iii) the absence of diameter limitations imposed by draft
and hull-clearance requirements. Despite these advantages, the partially submerged
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propellers have problems like vibration of blades and low efficiency when the high-
speed craft is operating at lower speeds. These require careful consideration during
design.

The development of theoretical and numerical methods for the performance
prediction of propellers is complicated. The presence of the free surface adds an
element of difficulty in the case of surface-piercing propellers. There is a strong
nonlinear interaction between the propeller and the free surface in the form of fast
moving jets that are formed along the pressure side and elevation of the water surface.
An add-on to the above nonlinear interaction is the effect of gravity, expressed in
terms of the Froude number representing the relative importance of inertial fluid
forces over gravitational forces.

Yim (1969, 1971, 1974) initiated the development of theoretical methods to
predict the performance characteristics of surface-piercing propellers by assuming
a two-dimensional flow field, which is obtained by unfolding the cylindrical surface
containing the blade element at a certain radius. The two-dimensional flow field in
essence consists of a layer of water, the thickness of which is equivalent to the distance
travelled by the leading edge of the blade element along the helical line during one
revolution. The blade element enters the layer at the top and exits through the bottom
part. This approach was applied by Yim (1969, 1971, 1974) to develop a linear theory
for the entry and exit of a thin hydrofoil and a base-vented symmetric wedge. Cox
(1971) also considered a similar linearized problem but included the effects of gravity
and made comparisons with experimental observations of the ventilated cavities
formed as a result of the vertical entry of a wedge-shaped blade element. Wang
(1977, 1979) applied the same approach as Yim (1969, 1971, 1974) to blade profiles
with full ventilation and also extended the scheme for an oblique entry and exit.
Another notable work based on linear theory is that of Terent’ev (1979). Common
to all the above theoretical methods is the linearization of the blade and ventilated
surfaces, assuming that both are thin, and the application of the linearized free-surface
boundary conditions on the original undisturbed location of the free surface. Yim
(1969, 1971, 1974), Wang (1977, 1979) and Terent’ev (1979) based their methods on
an infinite Froude number (no gravity) approximation for the free surface, assuming
that the duration of the entry-and-exit event is short and the velocity of entry is high.
An exception to this is the method of Cox (1971), who considered an arbitrary entry
speed and included the effects of gravity. Very few theoretical methods exist that take
into account the full nonlinearity of the ventilating problem. Two notable works are
those of Chekin (1989) and Faltinsen & Semenov (2008). Both the methods solved
the ventilating entry of a semi-infinite flat plate within the precepts of self-similarity.

In terms of numerical methods, Savineau & Kinnas (1995) developed a method
to solve the flow field around a fully ventilated two-dimensional surface-piercing
blade section using a time-marching low-order boundary-element method (BEM).
The important characteristics of the method are as follows: (i) the flow is solved with
respect to a coordinate system that moves along with the section, (ii) the vertical
velocity of entry is assumed to be sufficiently high for ventilation to start at the sharp
leading edge of the section and form a ventilated surface along the suction side, (iii) an
infinite Froude number is assumed and with this assumption, the free-surface bound-
ary conditions are linearized and the effects of gravity neglected, (iv) the linearized
free-surface boundary conditions are enforced using a ‘negative’-image method.

The application of the above linear and nonlinear theories is limited to simple
geometries in a gravity-free space. Moreover, the similarity solution method cannot
be used for sections of finite chord length. Although the numerical method of Savineau
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& Kinnas (1995) can be applied to sections of arbitrary shapes and finite dimensions,
it is limited in application because of the negative-image treatment of the free surface.
These shortcomings provide the motivation for this work, which is the development
of a numerical method with the following features:

(a) Fully nonlinear free-surface boundary conditions.
(b) Effects of gravity included: the parameter determining the influence of gravity

on the performance characteristics of a surface-piercing propeller is the Froude
number, defined as Fn = nD/

√
gD, where n is the rotational speed of the propeller, g

the acceleration due to gravity and D the diameter of the propeller.
It is well known from the experimental results of Shiba (1953) and Olofsson

(1996) that it is permissible to use zero-gravity theory in predicting the performance
characteristics of surface-piercing propellers when Fn > 3. This limit, however, does
not cover the entire range of operation of the surface-piercing propeller. Even with
the fully ventilated blades, the propeller can operate at Froude numbers less than 3,
which occur at low craft speeds. The experimental results of Olofsson (1996) show
that the effect of gravity cannot be neglected for these cases as it is seen to affect
not only the force distribution but also the shape of the ventilated surface. Thus, it
is important that along with the nonlinearity of the free surface, effects of gravity be
considered to cover the entire range of operation of the propeller.

(c) Ventilating entry of arbitrarily shaped hydrofoils of finite dimensions: the
emphasis here is on predicting the ventilating flow during the critical entry phase.

In the following sections, the physical assumptions, mathematical formulation and
numerical solution method will be presented. The experimental results of Cox (1971)
are chosen for comparison and validation of the numerical scheme described here.

2. Physical assumptions
The physical assumptions made in the modelling of the ventilating problem are as

follows:
(a) The flow is considered to be inviscid and irrotational, assuming that the speed

of entry is high enough to limit the effects of viscosity to a thin boundary layer.
(b) The dynamics of the surrounding air is neglected except for maintaining the

ventilated surface/free surface at a constant pressure – in the case of ventilation, the
surface is maintained at atmospheric pressure.

(c) The fluid is incompressible, assuming that the speed of entry is less than the
speed of sound. This assumption may be violated locally at the instant of impact of
the leading edge with the water surface due to the large accelerations.

(d) The effects of surface tension are ignored – it primarily affects the formation
of spray in the splash region.

(e) The hydrofoil is assumed to be rigid. This neglects any possible interaction
between the fluid and the hydrofoil due to vibration. (The propeller blade vibrates
as a consequence of the cyclic loading and unloading as it enters and exits the water
surface.) Experimental observations for surface-piercing propellers (Olofsson 1996)
indicate that the effects of vibration are not important during the entry phase of the
blade passage. A rigid-blade assumption is sufficient as the emphasis here is mainly
on the entry phase.

2.1. Unique aspects of the flow

(a) Inception of ventilation: The inception of ventilation is too complicated a process
to be modelled accurately within the framework of potential theory. The linear and
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Figure 1. Ventilating entry of a hydrofoil section: fluid domain and corresponding
boundaries.

nonlinear theoretical models described in § 1 assume the hydrofoil to be ventilating
from the very beginning, with ventilation starting at the leading edge.

(b) Detachment locations: The ventilated surface is nothing but a cavity that vents
into the atmosphere and is maintained at atmospheric pressure. An important aspect
of cavity flows is the problem of specifying the detachment location – the point
at which the cavity separates from the body surface (Birkhoff & Zarantonello
1957; Gilbarg 1960). Fixed detachment is appropriate for cases where the point
of detachment of the cavity is known a priori, for example, bodies with sharp
leading edges. For smooth blade sections, say with round leading edges, the cavity
detachment location is not known beforehand and has to be determined as a part
of the solution. Since typical surface-piercing propeller sections have sharp leading
edges, the ventilated surface is assumed to start right at the leading edge.

3. Mathematical formulation
Consider a rigid, wedge-shaped two-dimensional hydrofoil entering initially calm

water with a constant velocity V and an angle of attack α0, as shown in figure 1. A
fixed (non-rotating) Cartesian coordinate system is chosen to represent the flow with
its origin at the undisturbed water level. The flow is represented in terms of a velocity
potential φ(x, t), with the local fluid velocity given by q(x, t) = ∇φ =(φx, φy) = (u, v).
Here, x =(x, y) represents the spatial location with respect to the fixed coordinate
system, with x being the horizontal measure and y the vertical measure positive
upwards. The fluid domain and the corresponding boundary surfaces are shown in
figure 1. SWB (t) represents the ‘wetted’ part of the hydrofoil surface, SF (t) is the free
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Figure 2. Free-surface schematic showing the application of fully nonlinear free-surface
boundary conditions.

surface that also includes a part of the ventilated surface on the suction side of the
hydrofoil and S∞ is the far-field boundary.

3.1. Boundary integral equation

A boundary integral equation (BIE) is solved at each time step of a higher order
time-stepping scheme in order to obtain the velocity potential. Once the solution is
obtained for a particular time, the time-dependent boundary conditions are updated
and the solution scheme progresses onto the next one.

The boundary-value problem for the velocity potential is converted into a BIE by
introducing a two-dimensional Green’s function G( p, q) = (−1/2π) ln r pq (satisfying
the Laplace equation), where r pq = | p − q|, p ≡ p(x) is the field point and q ≡ q(x) is
the source point. The BIE obtained by applying Green’s third identity to φ(x, t) and
G( p, q) is

α( p)φ( p) +

∫
Γ

φ(q)Gn( p, q) dΓq

=

∫
Γ

G( p, q)φn(q) dΓq, (3.1)

where 2πα( p) is the internal angle formed at the boundaries, Gn( p, q) = ∇G( p, q) · nq

and φn( p, q) = ∇φ( p, q) · nq , with nq being the normal vector at q, positive out of the
fluid. Note that Γ represents all the boundaries of the fluid domain.

3.2. Kinematic boundary condition on SF (t)

The kinematic boundary condition (KBC) is obtained by assuming SF (t) to be a
bounding surface, i.e. no material passes across the free surface (Dussan V. 1976).
Based on the schematic shown in figure 2, if we represent the free surface as
F (x, t) = y − η(x, t) = 0, the KBC on the free surface is given by (Wehausen &
Laitone 1960; Dussan V. 1976)

D

Dt
F (x, t) = 0, (3.2)

where D/Dt =(∂/∂t) + ∇φ · ∇ is the material derivative. The parameter
q = ∇φ =(φx, φy) is the fluid velocity on the free surface and y = η(x, t) is the
free-surface elevation.
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From a Lagrangian particle representation of the free surface, for a particle P (x, y)
on the free surface, the KBC is given by (Dussan V. 1976; Longuet-Higgins & Cokelet
1976; Panton 1984)

Dx
Dt

= ∇φ or

⎧⎪⎨
⎪⎩

Dx

Dt
= u = φx

Dy

Dt
= v = φy

⎫⎪⎬
⎪⎭ , x ∈ SF (t). (3.3)

The dynamic boundary condition (DBC) is obtained from Bernoulli’s equation and
by assuming the pressure to be continuous across the free surface. It is assumed
that the wavelength of the free-surface elevation is long enough to neglect the effects
of surface tension. Thus, the pressure underneath the free surface must equal the
atmospheric pressure above, yielding the most general form of the free-surface DBC:

∂φ

∂t
+ 1

2
|∇φ|2 + gη +

Pf

ρ
= 0, x ∈ SF (t), (3.4)

where g is the acceleration due to gravity. The common form of the DBC is obtained
by expressing the pressure as gage pressure, in which case the pressure on the free
surface Pf = P −Patm =0. For a Lagrangian particle P (x, y), the DBC can be rewritten
as

Dφ

Dt
= 1

2
|∇φ|2 − gη, x ∈ SF (t). (3.5)

3.3. Boundary condition on hydrofoil SWB (t)

On the ‘wetted’ part of the hydrofoil surface SWB (t),

∇φ · n = V (t) · n, x ∈ SWB (t), (3.6)

where V (t) is the prescribed velocity of the hydrofoil. For the surface entry of a hy-
drofoil moving vertically downwards with a constant velocity Vw , the velocity V (t) =
(0, −Vw).

3.4. Boundary condition on far-field boundary S∞

The far-field boundary S∞ is assumed to be a no-flux surface with

∇φ · n = 0, x ∈ S∞, (3.7)

and special attention is paid to placing the boundary far away from the body to avoid
reflection of the waves generated by its motion. In terms of physical dimensions, it
was found sufficient to have the boundary about 10c away from the hydrofoil, where
c is the chord length of the hydrofoil under consideration.

3.5. Initial conditions

The initial conditions for this problem depend on the angle of attack α0 and the
existence of a ventilated surface on the suction side of the hydrofoil.

(a) For a fully wetted flow, a tiny fraction of the wedge is assumed to be initially
immersed. The solution is started impulsively and allowed to progress until the
hydrofoil is completely immersed.

(b) The treatment of the fully ventilating case requires special attention. For a
hydrofoil with a sharp leading edge, ventilation is triggered right at the leading
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edge. However, during the process of the development of the method it was found
extremely difficult to numerically ‘trigger’ ventilation at the leading edge. According
to Wang (1977) the flow field surrounding a ventilating hydrofoil is identical to that
of a supercavitating flat plate (in an unbounded fluid domain) with zero cavitation
number. This aspect of the flow forms the basis for getting the initial conditions for
the ventilating flow. The proposed model consists of the following steps: (i) Assume an
initial shape of the ventilated surface – the initial shape is derived from the analytical
expressions for the supercavity produced by a flat plate in an infinite flow domain.
These expressions are obtained from the free-streamline theory of Wu (1955). The
initial surface length is assumed to be a fraction of the chord length of the hydrofoil.
(ii) Instead of being treated as a free surface, the initial shape of the ventilated surface
is assumed to be rigid or wetted. With this assumption, the free-surface problem is
solved as an asymmetric water entry. (iii) After the hydrofoil has travelled a certain
distance, part of the initial surface assumed to be wetted is appended to the adjoining
free surface. (iv) The actual solution of the ventilating problem starts from this point
onwards. The intersection of the initial ventilated surface (modelled as wetted) and
the free surface is treated as a fixed separation point. The solution is allowed to
progress with the free surface on the suction side continuously detaching from the
intersection point.

3.6. Treatment at a fixed separation point

At the fixed separation point, the normal velocity of the free surface is assumed
to be the same as that of the hydrofoil. This assumption ensures continuity of
slope between the wetted body and the ventilated surface. This is consistent with
the analytical solution for the local flow presented in Faltinsen (2005) and Zhao,
Faltinsen & Aarsnes (1996). The potential is inherently continuous by virtue of the
use of linear isoparametric elements. The BIE is not solved at the separation point
as both the primary variable (φ) and the secondary variable (φn) are known.

4. Numerical formulation
A brief summary of the important numerical aspects of the scheme is presented

here. Details of the numerical scheme can be found in Vinayan (2009).
(a) A mixed Eulerian–Lagrangian (MEL) scheme of Longuet-Higgins & Cokelet

(1976) is used to solve the initial boundary-value problems presented in the previous
section. The MEL scheme comprises primarily two steps: (i) solve a well-defined
boundary-value problem based on a given set of boundary conditions using the
BEM and (ii) update the free-surface geometry and potential on the free surface
by time integration of the fully nonlinear kinematic and dynamic free-surface
boundary conditions. These two steps are repeated at each time step of a fourth-
order Runge–Kutta time-marching scheme. The proper implementation and solution
of the two MEL steps dominate the numerical implementation of the free-surface
problem.

(b) Linear iso-parametric elements form the basis for the numerical solution of
the BIE. A ‘double-node’ approach is used at the corners of the domain. However,
the BIE is not solved at a double node if it happens to be a separation point.

(c) The treatment of the jet that forms along the wetted side of the hydrofoil is
similar to that presented in Kihara (2006) and Sun & Faltinsen (2007). The jet is
allowed to grow until a threshold angle is reached between the jet and the adjoining
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body surface. Once this limiting angle is reached a new panel is created at an angle
greater than the threshold value. The intersection of the new panel with body surface
becomes the new body–free-surface intersection point. The angle is continuously
monitored during the solution and the ‘cut-off’ process is implemented every time it
is less than the threshold value. The value of the threshold angle is chosen to be π/15,
a value chosen to correspond to the analytical solutions presented in Dobrovol’skaya
(1969).

(d) A re-panelling scheme is implemented to maintain sufficient and uniform
resolution in the area of the jet. Even though linear elements are used to model the
free surface, re-panelling is performed using a cubic spline scheme with the arc length
of the surface as a parameter instead of the Euclidean distance. The arc length is
calculated by first fitting a cubic spline with the node index as a parameter. With
the cubic spline coefficients, the arc length is calculated numerically using a 12-point
Gauss–Legendre quadrature. This approach was suggested in Longuet-Higgins &
Cokelet (1976) to maintain the accuracy of the re-panelling scheme.

(e) A third-order five-point least-squares model is implemented to smooth
instabilities that arise during the simulation. The smoothing scheme was found to be
necessary to smooth out oscillations resulting from the impulsive start of the wetted
problem and applied only at an interval of 10 time steps. Moreover, the smoothing
process is applied only close to the intersection between the free surface and the
hydrofoil.

(f) The pressure on the body surface is obtained from Bernoulli’s equation

P

ρ
= −∂φ

∂t
− 1

2
|∇φ|2 − gy. (4.1)

The critical part of this expression for the pressure is the evaluation of the time
derivative ∂φ/∂t . In particular, it is important to note that the body surface changes
with time and also due to re-gridding. Taking these factors into consideration, we
have

δφ

δt
=

∂φ

∂t
+ Vg · ∇φ, (4.2)

where δφ/δt is used to represent the change in φ where one follows a point that moves
with a velocity Vg , which is different from the fluid velocity. This can be seen as a
generalization of the material derivative and is with respect to a coordinate system
moving with a constant velocity. To calculate the pressure on the body, Vg is set to
the local grid velocity of the body surface.

From (4.1) and (4.2), we have

P

ρ
= −δφ

δt
+ Vg · ∇φ − 1

2
|∇φ|2 − gy. (4.3)

The corresponding pressure coefficient is defined as

Cp =
2(P − Patm)

ρV 2
w

. (4.4)

5. Validation of the numerical algorithm
The numerical features of the scheme presented in the previous section are

thoroughly validated through a comparison with analytical self-similar solutions. The
first set of validations shown in figures 3 and 4, respectively, compare the free-surface
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Figure 3. Predicted free-surface elevation during water entry of a wedge with constant vertical
velocity (Vw) (symmetric entry with no ventilation). Comparison between ——, similarity
solution (Zhao & Faltinsen 1993); × × × × ×, BEM (Zhao & Faltinsen 1993); − · · − · · −,
current BEM. (a) Deadrise angle= 81◦. (b) Deadrise angle= 45◦.

elevations and pressure distributions predicted by the current scheme along with
the boundary-element solution of Zhao & Faltinsen (1993) and self-similar solution
of Dobrovol’skaya (1969) and Zhao & Faltinsen (1993). The results shown are for
the symmetric water entry of a wedge at a constant vertical velocity (Vw). It can be
observed from figure 3 that the current scheme is able to retain the jet over a longer
part of the wedge and agrees well with the self-similar solution. A similar observation
can be made in the case of the pressure distributions, as seen in figure 4.
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Figure 4. Predicted pressure distribution during water entry of a wedge with constant vertical
velocity (Vw) (symmetric entry with no ventilation). Comparison between similarity solution
of Dobrovol’skaya (1969) and Zhao & Faltinsen (1993) and current BEM. (a) Deadrise
angle= 81◦. (b) Deadrise angle= 45◦.
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Figure 5. Predicted pressure distribution during ventilating water entry of a flat plate at an
angle of attack of 30◦. Comparison between - - - -, analytical similarity solution of Faltinsen
& Semenov (2008) and –◦–, current BEM.

The second validation is for the ventilating entry of a flat plate at an angle of
attack of 30◦. A comparison of the predicted pressures, between the current scheme
and the analytical self-similar solution of Faltinsen & Semenov (2008), is shown in
figure 5. Note that the pressures shown are for the wetted part (pressure side) of the
plate with the suction side completely ventilated. The overall comparison is good and
this further validates the current scheme.

6. Results
Cox (1971) conducted a series of experiments with a symmetric wedge of dimensions

12.7 mm (0.5 in.) × 152.4 mm (6 in.) with a chord length of 152.4 mm (6 in.). In the
experiments, the wedge was dropped from different heights (equivalent to changing
the velocity of entry Vw) and at different angles of attack, α0. For each instance,
the ventilated-surface shape was photographed after the wedge had approximately
travelled its length through the water surface. These photographs provide an excellent
source of validation for the BEM model. As a representative case, a velocity of entry
of 2.45 m s−1 (corresponding to a drop of 304.8 mm) is chosen for validation. All the
subsequent BEM results correspond to this geometry and velocity.

In the subsequent calculations NWB , NF ,s , NF ,p and N∞ represent the total number
of panels on the wetted part of hydrofoil, the free surface on the pressure side, the
free surface on the suction side and the far-field boundary, respectively.

6.1. Convergence characteristics and effect of the initial condition

It was mentioned in the numerical formulation that an initial guess for the ventilated-
surface shape is obtained from the corresponding solution of a supercavitating flat
plate. The length initially guessed is expressed as a percentage of the total chord c

of the hydrofoil and is represented by the parameter δiv . Figure 6 shows the effect
of the parameter δiv on the final ventilated-surface shape. (The simulation is stopped
once the free surface on the wetted side reaches the base of the wedge.) In terms of
a chord length c = 152.4 mm, the minimum δiv of 2 %c would be about 3 mm, while
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Figure 6. Ventilating entry of a surface-piercing wedge: effect of the parameter δiv on the
ventilated-surface shape. Region C: magnified view of the ventilated-surface shape close to
the leading edge of the hydrofoil. (no discernible difference is seen in the surface shapes for
different δiv)

the maximum would be about 7 mm. On the whole, the parameter δiv does not affect
the final shape of the ventilated surface and the free-surface elevation on the wetted
side. Differences are observed in the region where the vertical part of the ventilated
surface meets the horizontal free surface. The similarity solutions of Chekin (1989)
and Faltinsen & Semenov (2008) predict a cusp at the point where the two convex free
surfaces meet. This aspect of the flow is not considered in the numerical scheme and
leads to the observed differences. Figure 7 shows the effect of δiv on the wetted-side
pressure and no discernible differences are observed. (All the subsequent calculations
are with δiv = 2 %c.)

The convergence of the ventilated-surface shape with respect to a change in the
number of panels on the surface is shown in figure 8, where NF ,s represents the
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Figure 9. Ventilating entry of a surface-piercing wedge: free-surface and ventilated-surface
shapes predicted by the BEM scheme in the absence of gravity (g = 0) (a) at different stages
of entry and (b) at time t = 0.0419 s. Parameters of the simulation: �t = 10−4 s, NWB =100,
NF ,s = 300, NF ,p = 125, N∞ = 40, �t is the time step.

number of panels on the entire free surface, including the ventilated surface, on the
suction side of the hydrofoil.

6.2. Effect of gravity

Figures 9 and 10, respectively, show the ventilated surfaces for different levels of
submergence, without (g = 0) and with (g �= 0) the effects of gravity. Figures 11 and
12 show the corresponding pressure distributions on the wetted part of the wedge.
Defining a Froude number in terms of the chord length c as Fnc = Vw/

√
gc, g = 0

would correspond to Fnc = ∞ and g �= 0 to Fnc = 2. (Note that in the figures, only
the wetted boundary of the hydrofoil is shown. Although the thickness form is not
shown, the ventilated surface does not intersect the suction side of the hydrofoil.) The
effect of gravity becomes apparent when the free-surface elevations are expressed in
terms of the similarity variables, as shown in figure 13. In the absence of gravity all
the free-surface profiles, starting with the first instance when similarity is observed
to the end of the simulation, are seen to overlap. The scheme is able to preserve the
self-similarity of the flow. The lack of self-similarity, as expected, can be observed in
figure 13 when the effect of gravity is included.

6.3. Comparison with experiments

In figure 14, a comparison between the predicted ventilated surface and that observed
from the experiments of Cox (1971) is shown for an angle of attack of 10◦. The
free-surface elevation and the ventilated surface are compared for the same level
of submergence. There appear to be two lines representing the ventilated surface in
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Figure 10. Ventilating entry of a surface-piercing wedge: free-surface and ventilated-surface
shapes predicted by the BEM scheme in the presence of gravity (g �= 0) (a) at different stages
of entry and (b) at time t = 0.0432 s. Parameters of the simulation: �t =10−4 s, NWB = 100,
NF ,s =300, NF ,p = 125, N∞ = 40; g �= 0 corresponds to Fnc = 2.0.

the photograph. Cox (1971) attributes this to the presence of glass walls that form
the boundaries of the experimental tank set-up. The outline farthest away from the
wedge that is generally convex to the fluid is presumably the location of the boundary-
layer attachment on the glass. This layer is formed due to the large retarding forces
experienced by the fluid particles close to the glass surface. Cox (1971) mentions that
the inner line represents the actual surface over most of the chord. Based on these
observations, it can be seen that the overall agreement between the predicted and the
experimentally ventilated surfaces is good.

A similar comparison between the experimental and predicted results is shown
in figure 15 for smaller angles of attack of 0◦, 2◦ and 4◦ respectively. In each
of these cases, the experimental photographs indicate that there is no ventilation
on the suction side of the wedge. In line with these observations the numerical
predictions are performed with both sides of the wedge wetted, i.e. the pressure and
suction sides of the wedge are assumed to be fully wetted (unlike the ventilating case
where the suction side is not wetted). The fully wetted formulation presented along
with the validation studies is used here with the wedge entering the water surface
at the specified angle of attack. For all the three angles of attack considered here, the
comparison between the predicted and experimental results is satisfactory.

6.4. Comparison with linear free-surface model

A comparison of the pressure distribution along the wetted face between the method
of Savineau & Kinnas (1995) (linear) and the current nonlinear method is shown
in figure 17. The linear method is clearly deficient in terms of capturing the excess
pressure due to the nonlinear free-surface effects. The excess pressure corresponds to
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Figure 11. Ventilating entry of a surface-piercing wedge: pressure along the wetted part of
the hydrofoil at different stages of entry in the absence of gravity (g = 0). Parameters of the
simulation: �t = 10−4 s, NWB =100, NF ,s = 300, NF ,p = 125 and N∞ = 40. Cp is the pressure
coefficient.

the region y > 0, where y = 0 corresponds to the undisturbed free-surface level. This
difference was shown to exist even in the very early stages of entry in Vinayan &
Kinnas (2008). Figures 16 and 17 highlight the shortcomings of the negative-image
method and the importance of including the nonlinear free-surface effects.

6.5. Effect of Froude number and angle of attack

Shiba (1953) and Olofsson (1996) mention that in the fully ventilated regime, the effect
of the Froude number is negligible when Fn > 3 (where Fn = nD/

√
gD is the Froude

number based on propeller diameter D and rotational speed n). This is because the
ventilated cavities have asymptotically attained their final shapes and a subsequent
increase in the Froude number makes no difference. A similar observation can be
made from the two-dimensional solutions shown in figure 18. The ventilated surfaces
are seen to converge rapidly towards the Fnc = ∞ (g =0) shape. The effect of the
Froude number on the suction side of the hydrofoil seems to be much stronger than
that on the pressure side. This is so because on the pressure side the formation of
spray is neglected. In the BEM-based numerical scheme, gaps are not allowed in the
domain. This forces the free-surface–body intersection point to be on the body at all
times and inhibits the formation of spray. Had the effect of spray been taken into
account by allowing the free-surface jet formed on the pressure side to continuously
separate from the body, one would have seen a stronger effect on the pressure side.
It should be noted that the pressure over a large region of the jet is equal to zero
(atmospheric) and thus its extent has negligible effect on the pressure distribution and
the forces on the foil.
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Figure 12. Ventilating entry of a surface-piercing wedge: pressure along the wetted part of
the wedge at different stages of entry in the presence of gravity (g �= 0). Parameters of
the simulation: �t = 10−4 s, NWB = 100, NF ,s = 300, NF ,p = 125, N∞ = 40. Cp is the pressure
coefficient; g �= 0 corresponds to Fnc = 2.0.

The normal force coefficient Cn and its variation with respect to a change in the
Froude number Fnc is shown in figure 19(a) for an angle of attack of α0 = 10◦. Here Cn

is defined as f/((1/2)ρV 2
w), where f =

∫
Pds is the normal force on the wetted part of

the hydrofoil. As the Froude number increases, the contribution of the gravitational
component of the pressure decreases, thus reducing its contribution to the normal
force. The percentage error in the normal force coefficient �Cn measuring the effect
of including gravity is shown in figure 19(b). There is a 50 % error at Fnc = 2.0, which
decreases to approximately 8 % at Fnc = 5.0. Here �Cn =(Cn −Cn∞)/Cn∞ ×100, where
Cn∞ is the normal force corresponding to Fnc = ∞ (g = 0).

There is a direct correlation between Fnc = Vw/
√

gc, which can be interpreted as
the Froude number corresponding to a propeller section of chord c and the Froude
number Fn = nD/

√
gD. For a section of the propeller at radius r , the velocity of entry

Vw = rω, where ω = 2πn is the angular velocity. Thus, we have Fnc = Fnπ
√

2r2/(cR),
where R = D/2 is the radius of the propeller. For a typical surface-piercing propeller
with c/D = 0.5, tables 1 and 2, respectively, show the values of Fn for r = 0.2R (at
the hub) and r = 0.7R. Also shown in tables 1 and 2 are the percentage errors in
the normal force coefficients compared to a no-gravity case (as shown in figure 19b).
From the results at r =0.2R, it can be inferred that even for Fn > 3, the effects of
gravity cannot be neglected for sections close to the hub.

Figure 20 shows the effect of the angle of attack on the ventilated-surface shapes
(g �= 0 corresponds to Fnc = 2). The volume of the ventilated surface is seen to increase
with a corresponding increase in the angle of attack. From the experimental results
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Fnc Fn �Cn, % error

2 2.25 52.58
3 3.38 22.70
4 4.50 12.64
5 5.63 8.33
6 6.75 5.46

Table 1. Variation of Fn and the percentage error of the normal force coefficient with respect
to Fnc at r = 0.2R.
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Figure 13. Ventilating entry of a surface-piercing wedge. Free-surface and ventilated-surface
shape, with (g �= 0) and without (g = 0) the presence of gravity, at different stages of entry
expressed in terms of the similarity variables; g �= 0 corresponds to Fnc = 2.0.

of Cox (1971), no ventilation is seen for angles less than 6◦. For smaller angles of
attack, the fully wetted mode can be used instead to calculate the pressure on the
wedge. (See figure 15 for the free surface predicted when no ventilation is present.)
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Fnc Fn �Cn, % error

2 0.64 52.58
3 0.96 22.70
4 1.29 12.64
5 1.61 8.33
6 1.93 5.46

Table 2. Variation of Fn and the percentage error of the normal force coefficient with respect
to Fnc at r = 0.7R.
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Figure 14. Ventilated-surface shape and free surface: comparison between experimental and
numerical (BEM) results. Vw = 2.45 m s−1 corresponding to a 304.8 mm fall. (Photograph of
experimental results from Cox (1971) used with permission.) g �= 0 corresponds to Fnc = 2.0.



402 V. Vinayan and S. A. Kinnas

–0.10 –0.05 0 0.05 0.10
–0.20

–0.15

–0.10

–0.05

0

0.05

12 in.

0°

12 in.

4°

12 in.

2°

α0 = 0°

α0 = 4°

α0 = 2°

y 
(m

)

–0.15

–0.10

–0.05

0

0.05

y 
(m

)

x (m)
–0.10 –0.05 0 0.05 0.10

–0.20

–0.15

–0.10

–0.05

0

0.05

x (m)

–0.10 –0.05 0 0.05 0.10

x (m)
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numerical (BEM) results. Vw = 2.45 m s−1 corresponding to a 304.8 mm fall. (Photograph of
experimental results from Cox (1971) used with permission.) Effects of gravity included.

7. Conclusions
A two-dimensional BEM-based numerical scheme has been developed to model

the strongly nonlinear interaction between a ventilating surface-piercing hydrofoil
and the free surface. The features of the current scheme that can be seen as an
important contribution towards improving the performance prediction of surface-
piercing propellers are the following:
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Figure 18. Ventilating entry of a surface-piercing hydrofoil: effect of the Froude number on
the ventilated-surface shapes. Fnc = ∞ corresponds to g = 0. Vw = 2.45 m s−1 for Fnc = 2.0 and
Vw = 3.67 m s−1 for Fnc = 3.0.

(a) All the nonlinearities of the three-way interaction among the hydrofoil, the
ventilated surface and the free surface are retained through the use of fully nonlinear
free-surface boundary conditions.

(b) The scheme can be applied to general hydrofoil shapes and inflow conditions.
(c) With gravity taken into consideration, the scheme allows for the effects of

having a finite Froude number.
The numerical scheme and the results presented here have been verified via

systematic grid-independent studies, and validated through a comparison with
previously available experimental and analytical results.

The shortcomings of a linearized free-surface approach have been illustrated by
comparing the results of the current method with that of Savineau & Kinnas (1995). In
comparison to the nonlinear method, the linear method tends to predict the ventilated
surface to be further away from the suction side of the hydrofoil. It also under-predicts
the pressure and the total force, especially since it ignores the contribution from the
free-surface elevation and jet on the pressure side of the hydrofoil.
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Figure 19. Ventilating entry of a surface-piercing hydrofoil: effect of the Froude number on
the normal force coefficient. Fnc = ∞ corresponds to g = 0. (a) Normal force coefficient, Cn. (b)
Error in normal force coefficient, �Cn = (Cn − Cn∞)/Cn∞ × 100, where Cn∞ is the normal force
corresponding to Fnc = ∞. Angle of attack α0 = 10◦.

In terms of future research directions, the current method can be seen as a precursor
to including fully nonlinear free-surface boundary conditions in a three-dimensional
scheme for the performance prediction of surface-piercing propellers. A framework
to build on is the three-dimensional BEM-based scheme described in detail in Young
(2002) and Young & Kinnas (2003), which in itself is an extension of the numerical
method developed by Kinnas & Fine (1993) for predicting cavitation on three-
dimensional hydrofoils.
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Figure 20. Ventilating entry of a surface-piercing hydrofoil: effect of angle of attack on the
ventilated-surface shapes with (g �= 0) and without (g = 0) the presence of gravity; g �= 0
corresponds to Fnc = 2.0.

The method of Young & Kinnas (2003) simplifies the performance analysis by
using a negative-image method for the free surface. Despite this approximation, the
method predicts the mean forces with reasonable accuracy when compared to the
experimental results of Olofsson (1996). However, discrepancies are observed in
the dynamic behaviour of the forces, especially at the entry stage of the blade cycle
and this can be attributed to the lack of nonlinear free-surface effects. The fully
nonlinear two-dimensional method presented here can be extended to the three-
dimensional scheme to improve the treatment of the free surface. In addition to
the nonlinear effects of the free surface, the effect of gravity has to be taken into
account to predict the performance characteristics at low speeds of operation and
also improve the pressure distribution at the inner radii of the propeller at higher
speeds. The authors feel that including fully nonlinear free-surface effects along with
the inclusion of gravity should improve the correlation with experiments and also the
prediction of performance characteristics over a large range of operating conditions.
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